Kauffman Monoids 0 Introduction

نویسندگان

  • Mirjana Borisavljević
  • Zoran Petrić
چکیده

This paper gives a self-contained and complete proof of the isomorphism of freely generated monoids extracted from Temperley-Lieb algebras with monoids made of Kauffman’s diagrams. Mathematics Subject Classification (2000): 57M99, 20M05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Introduction

This paper gives a self-contained and complete proof of the isomorphism of freely generated monoids extracted from Temperley-Lieb algebras with monoids made of Kauffman’s diagrams. Mathematics Subject Classification (2000): 57M99, 20M05

متن کامل

Monadic Bounded Commutative Residuated l-monoids

An algebra M = (M ; ,∨,∧,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 is called a bounded commutative R`-monoid iff (i) (M ; , 1) is a commutative monoid, (ii) (M ;∨,∧, 0, 1) is a bounded lattice, and (iii) x y ≤ z ⇐⇒ x ≤ y → z, (iv) x (x → y) = x ∧ y, for each x, y, z ∈ M . In the sequel, by an R`-monoid we will mean a bounded commutative R`-monoid. (Note that bounded commutative R`-monoids are just bo...

متن کامل

Monoid generalizations of the Richard Thompson groups

The groups Gk,1 of Richard Thompson and Graham Higman can be generalized in a natural way to monoids, that we call Mk,1, and to inverse monoids, called Invk,1; this is done by simply generalizing bijections to partial functions or partial injective functions. The monoids Mk,1 have connections with circuit complexity (studied in another paper). Here we prove that Mk,1 and Invk,1 are congruence-s...

متن کامل

Information Technology and Pricing: Introduction to the Special Section

* The two papers presented in the current issue are independent research papers. We bundled them together to open up a discourse around the pricing issue. Professor Rob Kauffman kindly provided an editorial introduction.

متن کامل

A Countable Family of Finitely Presented Infinite Congruence-free Monoids

We prove that monoids Mon〈a, b, c, d : ab = 0, ac = 1, db = 1, dc = 1 dab = 1, dab = 1, . . . , dab = 1〉 are congruence-free for all n ≥ 1. This provides a new countable family of finitely presented congruence-free monoids, bringing one step closer to understanding the Boone–Higman Conjecture. We also provide examples which show that finitely presented congruence-free monoids may have quadratic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000